A pumpless cell culture chip with the constant medium perfusion-rate maintained by balanced droplet dispensing.

نویسندگان

  • Taeyoon Kim
  • Young-Ho Cho
چکیده

This paper presents a pumpless cell culture chip, where a constant-rate medium perfusion is achieved by balanced droplet dispensing. Previous pumpless cell culture chips, where the gravity-driven flow is induced by gradually decreasing the hydraulic-head difference, Δh, between source and drain reservoirs, result in a decreasing perfusion-rate. However, the present pumpless cell culture chip, where autonomous droplet dispensers are integrated on the source reservoirs, results in a constant perfusion-rate using a constant Δh maintained by balanced droplet dispensing between the source-inlet and the drain-outlet. In the experimental study, constant perfusion-rates of 0.1, 0.2, and 0.3 μl min(-1) are obtained by Δh of 38, 76, and 114 mm, respectively. At the constant perfusion-rate (Q=0.2 μl min(-1)), H358 lung cancer cells show the maximum growth-rate of 57.8 ± 21.1% d(-1), which is 1.9 times higher than the 30.2 ± 10.3% d(-1) of the static culture. At a perfusion-rate varying between 0.1-0.3 μl min(-1) (average=0.2 μl min(-1)), however, the H358 cells show a growth-rate of 46.9 ± 8.3% d(-1), which is lower than that of the constant Q of 0.2 μl min(-1). The constant-rate perfusion culture (Q=0.1, 0.2, and 0.3 μl min(-1)) also results in an average cell viability of 89.2%, which is higher than 75.9% of the static culture. This pumpless cell culture chip offers a favorable environment to cells with a high growth-rate and viability, thus having potential for use in cell-based bio-assays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering

In this work, a method is presented for controlling on-chip droplet dispensing by electro-wetting actuation in conjunction with capacitance feedback. The method exploits the built-in capacitance of an electro-wetting device to meter the droplet volume and control the dispensing process. A self-contained system is built to provide continuous-flow loading, capacitance measurement, and electro-wet...

متن کامل

Human trabecular meshwork cell survival is dependent on perfusion rate.

PURPOSE To determine whether suppression of flow may be detrimental to trabecular cell survival and to the morphologic characteristics of the trabecular meshwork. METHODS The anterior segments of normal human eye bank eyes were placed in perfusion organ culture. The effect of various perfusion rates of culture medium, and of the constant flow and constant pressure methods of delivery of cultu...

متن کامل

Characterisation of oxygen permeation into a microfluidic device for cell culture by in situ NMR spectroscopy.

A compact microfluidic device for perfusion culture of mammalian cells under in situ metabolomic observation by NMR spectroscopy is presented. The chip is made from poly(methyl methacrylate) (PMMA), and uses a poly(dimethyl siloxane) (PDMS) membrane to allow gas exchange. It is integrated with a generic micro-NMR detector developed recently by our group [J. Magn. Reson., 2016, 262, 73-80]. Whil...

متن کامل

Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms.

Surface tension driven transport of liquids on open substrates offers an enabling tool for open micro total analysis systems that are becoming increasingly popular for low-cost biomedical diagnostic devices. The present study uses a facile wettability patterning method to produce open microfluidic tracks that - due to their shape, surface texture and chemistry - are capable of transporting a wi...

متن کامل

Transitioning from multi-phase to single-phase microfluidics for long-term culture and treatment of multicellular spheroids.

When compared to methodologies based on low adhesion or hanging drop plates, droplet microfluidics offers several advantages for the formation and culture of multicellular spheroids, such as the potential for higher throughput screening and the use of reduced cell numbers, whilst providing increased stability for plate handling. However, a drawback of the technology is its characteristic compar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 11 10  شماره 

صفحات  -

تاریخ انتشار 2011